Finding Overlapping Communities Using Disjoint Community Detection Algorithms

نویسنده

  • Steve Gregory
چکیده

Many algorithms have been designed to discover community structure in networks. Most of these detect disjoint communities, while a few can find communities that overlap. We propose a new, two-phase, method of detecting overlapping communities. In the first phase, a network is transformed to a new one by splitting vertices, using the idea of split betweenness; in the second phase, the transformed network is processed by a disjoint community detection algorithm. This approach has the potential to convert any disjoint community detection algorithm into an overlapping community detection algorithm. Our experiments, using several “disjoint” algorithms, demonstrate that the method works, producing solutions, and execution times, that are often better than those produced by specialized “overlapping” algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain

Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...

متن کامل

Leveraging disjoint communities for detecting overlapping community structure

Network communities represent mesoscopic structure for understanding the organization of real-world networks, where nodes often belong to multiple communities and form overlapping community structure in the network. Due to non-triviality in finding the exact boundary of such overlapping communities, this problem has become challenging, and therefore huge effort has been devoted to detect overla...

متن کامل

Detecting Overlapping Communities in Social Networks using Deep Learning

In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...

متن کامل

Overlapping Communities for Identifying Misbehavior in Network Communications

In this paper, we study the problem of identifying misbehaving network communications using community detection algorithms. Recently, it was shown that identifying the communications that do not respect community boundaries is a promising approach for network intrusion detection. However, it was also shown that traditional community detection algorithms are not suitable for this purpose. In thi...

متن کامل

Ensemble-Based Discovery of Disjoint, Overlapping and Fuzzy Community Structures in Networks

Though much work has been done on ensemble clustering in data mining, the application of ensemble methods to community detection in networks is in its infancy. In this paper, we propose two ensemble methods: EnDisCo and MeDOC++. EnDisCo performs disjoint community detection. In contrast, MeDOC++ performs disjoint, overlapping, and fuzzy community detection and represents the first ever ensemble...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009